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Abstract 

The relatively rigid nature of  covalent bonds  imposes 
limits on the difference between the mean-square  
displacements  of  the bonded  atoms projected in the 
bond direction A(m.s.d.a.) .  Evidence from X-ray 
crystal lography shows that for many small-molecule 
structures this difference is usually less than the mean-  
square vibration ampli tude of  the bond. In less well 
ordered structures,  where libration is more significant, 
molecu~r -dynamics  calculations suggest that 
A(m.s.d.a.)  values may be much larger. A model  of  
the kinematics of a librating bond is proposed and it 
is shown that a first-order approximation to 
A(m.s.d.a.) is dependent  on both second and fourth 
curvilinear moments .  

Introduction 

The relatively rigid nature of  covalent bonds has been 
exploited in several ways in refining crystal structures 
and in investigating the mean-square  atomic displace- 
ments derived therefrom. 

Hirshfeld (1976) refined charge-deformat ion  
models of  four  small organic structures. He examined 
the mean-square  displacement  ampli tudes (m.s.d.a.) 
of  pairs of  bonded  atoms in the direction of  the bond 
and showed that the difference A (m.s.d.a.) was smal- 
ler in the charge-deformat ion  model than in that 
which assumed spherical atoms. By assuming that  
covalently bonded  pairs of  atoms should have 
effectively equal m.s.d.a. 's along their mutual  bond,  
he was able to assert the superiority of  the charge- 
deformat ion model.  For atoms at least as heavy as 
carbon Hirshfeld est imated that the mean-square  
ampli tude differences along bonds should normal ly  
be well under  0.001/~2. 

Rollett (1970) stated that when two atoms are 
joined by a covalent bond,  the difference between the 
atomic-vibrat ion ampli tudes in the bond direction 
could not exceed the ampli tude of the bond-stretching 
vibration which for a ca rbon-ca rbon  bond he esti- 
mated at 0.06 A. He proposed that this vibration 
ampli tude might be used to impose a restraint on the 
thermal parameters  of  bonded  atoms in least-squares 
refinement. Terms representing the difference 
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between the components of anisotropic temperature 
factors in the bond direction might be included in 
the summation to be minimized with weights that 
would be the reciprocal of the square of the bond- 
vibration amplitude. 

A similar idea was applied to macromolecular 
refinement by Hendrickson & Konnert (1980), first 
to isotropic and then to anisotropic m.s.d.a.'s 
(Konnert & Hendrickson, 1980). Using a riding model 
for bond dynamics, these authors restrained the vari- 
ances of the bond lengths, and molecular dynamics 
was subsequently employed to evaluate this 
refinement strategy (Yu, Karplus & Hendrickson, 
1985). 

In this paper the relative m.s.d.a.'s of atoms joined 
by a covalent bond will be discussed in terms of a 
general model of bond dynamics which is applicable 
to small molecules and to macromolecules where 
much larger atomic displacements occur. The more 
specialized models such as the riding model (Busing 
& Levy, 1964) and the rigid-body model (Cruick- 
shank, 1956; Schomaker & Trueblood, 1968; Pawley 
& Willis, 1970) of bond dynamics can be considered 
as special cases of the model proposed. The evidence 
from vibrational spectroscopy, X-ray crystallography, 
molecular dynamics and normal-mode analysis will 
be considered in order to characterize the types of 
motion available to covalent bonds. 

Models of bond dynamics 

Consider two atoms A and B, joined by a bond of 
instantaneous length d which has a mean-square 
bond vibration amplitude (m.s.b.v.a.) of 0 "2. 
m.s.b.v.a.'s may be derived from vibrational spectros- 
copy and are determined largely by the atom types 
of A and B and the nature of the bond between them. 
At room temperature they are typically in the range 
0.001-0.005 A 2 with larger values occurring for bonds 
involving hydrogen atoms (Cyvin, 1968). 

In order to relate m.s.b.v.a.'s to A(m.s.d.a.)'s we 
may consider, without the loss of generality, the mean 
positions of A and B as lying on the z axis. A (m.s.d.a.) 
is then defined as 

A (m.s.d.a.) = a:zB -- AzZA, (1) 

where the m.s.d.a.'s of A and B projected onto the z 
axis are written as A2ZA and A2zo respectively, and 
the corresponding root-mean-square values are writ- 
ten in the same notation without superscripts. These 
quantities may be derived from the Cartesian com- 
ponents of the conventional crystallographic m.s.d.a. 
tensor U by means of expressions such as 

A2za = nTUA n, (2) 

where n is a matrix denoting a unit vector along z, 
and r denotes the transpose operation. 

We wish to investigate the relationship between the 
crystallographic A(m.s.d.a.) and the spectroscopic 
m.s.b.v.a. In order to do this we need a model of the 
relative displacements of A and B. If the instan- 
taneous length of the interatomic vector is d and 0 
is the instantaneous angle that the vector makes with 
the line joining the mean position of the atoms, then 
the variance of the projection of the bond onto the z 
axis is given by 

A2z = ( (d  cos O-(d  cos 0)) z) (3) 

= ( d  2 cos 2 0 ) - ( d  cos 0) 2. (4) 

If the length d and the angle 0 are independent, then 

A2z = (d2)(cos 2 0)-(d)2(cos 0) 2 

=0.2(cos 0)2+(d)2((cos~ 0)-(cos 0)2). (5) 
The first term of the right-hand side of (5) is prin- 
cipally dependent on the m.s.b.v.a, of the bond while 
the second term is dependent on the nature of the 
bond libration. 

The relation between the variance of the projected 
bond, A2z, and A(m.s.d.a.) depends on how the 
motions of A and B are correlated. We introduce the 
correlation coefficient of the projected displacements 
defined as 

r =cov (SZaSZ,)/(A2ZAA2ZB)1/2, (6) 

where 6ZA and 6zB are the instantaneous displace- 
ments of A and B. For bonded atoms r is always 
close to unity but it will be seen below that for a 
given A2z the value of A(m.s.d.a.) is highly sensitive 
to the precise value of r. In terms of this correlation 
coefficient 

A2Z = A2ZA -~ A2ZB -- 2rAzAAZB. (7) 

The solution of (7) as a quadratic equation for AZB is 

AZB = rAZA ± (A2z  - I2A) '/2 (8)  

where 

t2a = (1-- r2)A ZZa • (9) 

Squaring (8) and subtracting A2ZA from both sides 
then gives 

A(m.s.d.a.) = AZz--2t2a ± 2r[ A2za( A2z-- t2A)]l/2. (10) 

Equation (10) shows the possible values for 
a (m.s.d.a.) for given values of the projected m.s.d.a. 
of atom A, the projected m.s.b.v.a, of the bond and 
the correlation coefficient (r) of the projected dis- 
placements. For realistic vibrations of bonded atoms, 
only values of r close to unity yield real roots of (9) 
and hence meaningful A(m.s.d.a.). Obviously, the 
motions of bonded atoms must show a strong positive 
correlation in the bond direction. 
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Table 1. Differences of mean-square displacements along bonds [ A( m.s.d.a.)] and correlation coefficients (r) 
of projected atomic displacements along the line joining the mean positions of the atoms for two values of A2zA 

Values in parentheses  show other  A (m.s.d.a.) 's consistent  with the associated correlation.  These values have been derived from equat ion 
(10) and assume A Z z  = 0.002 ,~2 which is a typical mean-square  vibrat ion of  a single bond.  

A22A=0"01A A22A=0"l  A 2 

Model  r x 104 A (m.s.d.a.) x 104 tl,2 r x 104 A(m.s.d.a.) × 104/~2 

Riding model (A riding on B) 8944 -20 9899 -20 
r = A z a / A Z  A 

Zero-difference model 9000 0 (-36) 9900 0 (-40) 
r = I - A 2 z / 2 A 2 Z A  

Riding model (B riding on A) 9129 20 (-47) 9902 20 (-59) 
r = A z A / A z a  

Totally correlated model 10 000 109 (-69) 10 000 303 (-263) 
r = l  

Models without libration 

Two limiting cases of the proposed model may be 
distinguished. In the first case the bond libration can 
be neglected and (5) reduces to A2z = 0.2. This case 
may be relevant to the bond dynamics of many small 
molecules. An application of (10) to the case where 
0.2= A2z = 0"002 ~2 is shown in Table 1. Such a 
value of 0 .2 is typical of the variance of a carbon- 
carbon single bond. Table 1 shows several important 
examples. In the riding model of Busing & Levy 
(1964) an atom A is said to ride on atom B if it has 
all the translational motion of B plus an additional 
motion uncorrelated with the instantaneous position 
of B. For this model A(m.s.d.a.)= 0.2 and this may 
apply well to hydrogen atoms, which may be con- 
sidered as riding on the heavier atom to which they 
are bonded. However, where pairs of atoms of roughly 
equal mass are bonded, the bond vibration is likely 
to be more equally partitioned between the bonded 
atoms and the zero-difference model may offer a 
better approximation. Indeed, a number of high- 
precision X-ray crystallographic studies have shown 
values of A(m.s.d.a.) of less than 0.001 A 2 [see, for 
example, Seiler, Schweizer & Dunitz (1984)]. 

The totally correlated model is obtained by substi- 
tution of r = 1 into (10). This yields 

A (m.s.d.a.) = 0.2+20.AZA (11) 

for a bond with no libration, where 0.2= A2z. This 
equation gives the upper and lower theoretical limits 
for A(m.s.d.a.) given the m.s.b.v.a of the bond and 
the mean-square displacement of atom A. By sub- 
stituting for A(m.s.d.a.) from (1) we have 

0. = AZA + Aze. (12) 

Taking the negative sign in this equation we have the 
limit given by Rollett (1970) and referred to above. 

In the totally correlated model very,large values of 
A(m.s.d.a.) may occur, as shown in Table 1, and 
although these are kinematically possible, the 
dynamics of molecular motion would suggest that 

Table 2. Values ofA(m.s.d.a.) (A x 10 4) for the nona- 
peptide oxytocin as determined from normal-mode 
analysis in Cartesian coordinates and from a 1 ns 

molecular-dynamics simulation 

Bonds involving hydrogen atoms have been omitted. 

Norma l -mode  Molecular  
Bond type analysis dynamics  

Main chain 2 229 
Side chain 5 629 

A(m.s.d.a.) values should be less than the m.s.b.v.a 
and should often conform to the original postulate 
of Hirshfeld (1976). The low-frequency normal modes 
which make the most significant contribution to 
m.s.d.a.'s leave bonds almost rigid. The few normal 
modes which give rise to significant bond stretching 
hardly contribute to the m.s.d.a.'s. This view is 
confirmed by normal-mode analysis (NMA) in Car- 
tesian coordinates which operates within the har- 
monic approximation. Table 2 shows average 
A(m.s.d.a.) values for different bond types of the 
nonapeptide oxytocin. The NMA values for bonds 
are well within the limits of the riding model. 

The librating bond 

The second limiting case of (5) occurs when bond 
stretching may be neglected, in which case the 
equation reduces to 

A2z=d2((cos 2 0>-(cos 0>2). (13) 

An important example of this case is rigid-body 
motion, which is particularly relevant in structures 
containing conjugated groups of atoms. Here the 
correlation between the librations perpendicular to 
the bond and the rigid-body translation parallel to 
the bond determine the value of r for each bond and 
hence the relationship between A(m.s.d.a.) and A2z. 
This correlation may be derived from the tensor com- 
ponents in the TLS model of Schomaker & Trueblood 
(1968). 
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The model of a librating rigid bond may be gen- 
erally applicable in macromolecular dynamics, where 
libration rather than bond stretching may be a sig- 
nificant contribution to A (m.s.d.a.). Unfortunately, it 
is difficult to test this hypothesis by extracting mean- 
ingful a(m.s.d.a.) values from X-ray diffraction 
studies of macromolecular structures. This is because 
the paucity of data gives rise to m.s.d.a.'s with large 
standard deviations. In the free anisotropic 
refinement of oxytocin (Wood et al., 1986) where data 
extended to a resolution beyond 1.1/~, a (m.s.d.a.)'s 
were of the order of one standard deviation. In 
macromolecules such as proteins even larger o,'rors 
would be encountered. 

Estimates of root-mean-square librations can, how- 
ever, be obtained from macromolecular structures 
by X-ray diffraction. The TLS model has been used 
by Howlin, Glover, Haneef & Moss (1987) in the 
refinement of many side groups in the protein ribonu- 
clease. Root-mean-square librations of up to 12 ° were 
encountered in the side chains on the surface of the 
enzyme. Side-chain librations which could not be 
modelled could well be much larger. 

We have used molecular dynamics (MD) to evalu- 
ate the sort of bond dynamics which may be taking 
place in larger molecular structures. In this procedure 
libration may be simulated and the harmonic model 
is not imposed. The MD simulation used the SHAKE 
algorithm (Ryckaert, Ciccotti & Berendsen, 1977) 
where bonds are constrained to have a m.s.b.v.a, of 
less than 10 -5 A2. A (m.s.d.a.)'s from such simulations 
are therefore almost entirely due to libration and the 
values from a MD study of oxytocin (Treharne & 
Haneef, 1984) are shown in Table 2 where they can 
be seen to be two orders of magnitude larger than 
the corresponding NMA values. Further, Yu et al. 
(1985) found that their MD study of bovine pan- 
creatic trypsin inhibitor was also incompatible with 
a riding model of bond motion. 

Maclaurin expansion of (13) shows that even to a 
first approximation A2z is dependent on both second 
and fourth curvilinear moments and is given by the 
expression 

a2z=~dZ(b2 - 1)(02) 2 

A2z=0 .017A 2 and A(m.s.d.a.)=0.010A 2. Fig. 2 
shows how large a(m.s.d.a.) values are generally 
associated with larger librations. A2z values are of 
the same order of magnitude as A(m.s.d.a.). 

We have evaluated root-mean-square librations 
and A2z using 

~f(0) exp [-  V( O)/kT] dO 
(f(0))  = ~exp[-V(O)/kT]dO (15) 

where f (0 )  = 0, 02, d cos 0, d 2 cos 0 respectively, d2z 
was then calculated from (13). Typical anharmonic 
potential functions V(O) such as 

V(0)=  a [ l ' 0 -  cos (nO)+ flO 2] 

can yield values of aZz of the same order as that 
found in the MD simulation. Some examples are 
shown in Table 3. 

800-00 

500.0~ 
g 

400-0G 

z 

200.00 ~ _ 

0.00 10.00 20.00 30-00 40:00 50:00 60"00 70:00 80"00 
Librational amplitude (°) 

Fig. 1. Histogram of frequencies of librational amplitude of one 
Ca-C/3 bond during a 1 ns molecular-dynamics simulation of 
oxytocin. The spherical polar angle plotted is that subtended by 
the bond to its mean position during the simulation. The frequen- 
cies in the bins have been normalized by division by the sine of 
the mean librational amplitude appropriate to that bin. 

0.08 

0.07 

(14) 0.08 

where b 2 = (04)/(02) 2. For highly leptokurtic distribu- ~ o.o5 
tions large A2z values may thus correspond to modest "~ 
root-mean-square librations. Unfortunately, it is not ~ 004 

E possible to propose one simple model of bond libra- ~ o.03 
tion which is likely to account for the complex 002 
motions which occur in macromolecules. However, 
higher-moment assumptions are necessary before A 2z 0.01 
values can be calculated. 

0-0t 
The MD simulation of oxytocin (Table 2) suggests 

that large A(m.s.d.a.) values are also found in main 
chains• Fig. 1 shows the distribution of 0 for a Ca -Cf l  
bond in oxytocin during our MD simulation. For this 
distribution the root-mean-square libration is 10 °, 

• °° °. 
• °°e, 

• ...~ • ° ° . 
o •°°~ • • 

4.00 8-00 12~00 16~00 
R.M.S. [ ibrat ional ampl i tude (°) 

20.00 

Fig. 2. Graph of A(m.s.d.a.) against root-mean-square librational 
amplitude for all bonds of oxytocin not involving hydrogen 
atoms• These values were derived from a 1 ns molecular- 
dynamics simulation of oxytocin. 
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Table 3. A2z values for a librating bond derived from 
equations (13) and (15) using anharmonic potential 

functions V(O) as shown 

In each function the value of a was chosen to yield a root-mean 
square libration of 10 °. 

V(O) A2zX 10 4 A 2 

a(1.0+0.182) 7 
ct(l '0- COS 28+0"182) 7 
a( l .O-cos 30 +O.182) 25 
a(1.0-COS 48 + O. l O 2) 152 

Discussion 

X-ray crystallographic studies of small molecules 
show that A(m.s.d.a.)'s are normally much less than 
the corresponding m.s.b.v.a. Such values can be 
accounted for without invoking bond libration and 
can be understood from a harmonic model of atomic 
displacements. It should be noted, however, that high- 
precision studies are often carried out at low tem- 
peratures where some librational effects may be 
partially frozen out. 

The evidence of molecular dynamics suggests that 
much more complex motions take place in larger 
more flexible molecules such as polypeptides and 
proteins and that A (m.s.d.a.) values may occur which 
are much greater than would arise from a molecule 
undergoing small harmonic vibrations. In view of the 
approximations involved in molecular-dynamics 
simulations and the lack of any internal assessment 
of errors, it would be wise to regard the results as 
yielding order-of-magnitude measures of mean- 
square displacements rather than quantitative esti- 
mates. Comparison with crystallographic refinements 
confirms that such an approach is reasonable 
(Northrup, Pear, McCammon, Karplus & Takano, 
1980). 

Rigid-bond tests which use za(m.s.d.a.) as an 
indicator of error in refined atomic displacement 
parameters should therefore be used with caution 
unless there is independent evidence which shows 
that bond librations are sufficiently small that they 
may be neglected. Moderate dynamic or static disor- 
der as regularly occur in macromolecular structures 
(Frauenfelder, Petsko & Tsernoglou, 1979) may 
invalidate such tests. 

Similar caution should also be exercised in using 
m.s.b.v.a, as a basis for restraining m.s.d.a.'s in 

macromolecular refinement. In order to be valid such 
restraints should take into account the librational 
nature of bond dynamics and not rely on a simple 
riding-model approximation. 

The applicability of rigid-bond tests could be fur- 
ther investigated using high-quality crystallographic 
refinements of small-molecule structures containing 
disordered groups. Higher-order models of libration 
(Prince & Finger, 1973; Shmueli & Goldberg, 1974) 
could be employed with better error estimations than 
are available either from macromolecular X-ray 
refinements or from molecular dynamics simulations. 

The authors thank Professor F. L. Hirshfeld for 
useful criticism and Professor T. L. Blundell for 
helpful comments. 
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